If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2)-40x+96=0
a = 4; b = -40; c = +96;
Δ = b2-4ac
Δ = -402-4·4·96
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8}{2*4}=\frac{32}{8} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8}{2*4}=\frac{48}{8} =6 $
| 3(4x^2-33x-8)=0 | | 1/8=z^2 | | -5(r+7=-61) | | 10=-5/4y | | x^2-4+120=180 | | 4(5-2x)-3x=8x-113 | | (3y-20)+(y-24)=180 | | y=17(4+10)-8(10)/7-10 | | -4/9x=24 | | 4x5+4x2x-3x=8x-113 | | 3=4+n/10 | | -3/5y=-12 | | f=9/5(32)+32 | | (5+x=13)x12x4 | | -(w+4)=4w-5 | | 10=2^x-22 | | 5x+14=x+12 | | -30=-5/4y | | 10x+0.025=155 | | 1/3y+1=1/10y | | -36+9+y=-14+19 | | -2(9y-1)+8y=-2(y+1) | | -8=-4/9v | | 3(u-5)-3=-2(-2u+8)-7u | | 3x+6=-2x+14 | | (x+2)^2-x^2=44 | | 5/(2x+1)-8x(2x-1)=-4 | | (x+8)^2=-25 | | |4c+5|=7 | | 4w+4-2(-5w-1)=2(w-2) | | 45a-9a^2/9*a+5/a^2+25= | | 5t-10t-25=0 |